Bi-Bazilevič functions of complex order involving Ruscheweyh type q-difference operator

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analytic Functions Involving Complex Order

and Applied Analysis 3 Definition 1.1 Hadamard product or convolution . For functions f and g in the class A, where f z of the form 1.1 and g z is given by g z z ∞ ∑ k 2 ckz , 1.8 the Hadamard product or convolution f ∗ g z is defined by ( f ∗ g z z ∞ ∑ k 2 akbkz k ( g ∗ f z , z ∈ U. 1.9 Definition 1.2 subordination principle . For analytic functions g and hwith g 0 h 0 , g is said to be subord...

متن کامل

Subclasses of Bi-Univalent Functions of Complex Order Based On Subordination Conditions Involving Wright Hypergeometric Functions

In this paper, we introduce and investigate a new subclass of biunivalent functions ∑ of complex order defined in the open unit disk, which are associated with hypergeometric functions and satisfy subordinate conditions. Furthermore, we find estimates on the Taylor-Maclaurin coefficients 2 | | a and 3 | | a for functions in the new subclass. Several (known or new) consequences of the results ar...

متن کامل

q-Karamata functions and second order q-difference equations

In this paper we introduce and study q-rapidly varying functions on the lattice q0 := {qk : k ∈ N0}, q > 1, which naturally extend the recently established concept of q-regularly varying functions. These types of functions together form the class of the so-called q-Karamata functions. The theory of q-Karamata functions is then applied to half-linear q-difference equations to get information abo...

متن کامل

On Neighborhoods of a Certain Class of Complex Order Defined by Ruscheweyh Derivative Operator

In this paper, we introduce the subclass R b (A,B, α, μ) which is defined by concept of subordination. According to this, we obtain a necessary and sufficient condition which is equivalent to this class. Further, we apply to the δ− neighborhoods for belonging toR b (A,B, α, μ) to this condition.

متن کامل

Spectral Theory from the Second-Order q-Difference Operator

Spectral theory from the second-order q-difference operator Δ q is developed. We give an integral representation of its inverse, and the resolvent operator is obtained. As application , we give an analogue of the Poincare inequality. We introduce the Zeta function for the operator Δ q and we formulate some of its properties. In the end, we obtain the spectral measure. 1. Basic definitions Consi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica

سال: 2018

ISSN: 2300-133X,2081-545X

DOI: 10.2478/aupcsm-2018-0001